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what I call a flow on a c*-aigebra A was usually referred to

as a strongly continuous one-parameter automorphism

group of A until some time ago. This topic was extensively stud-

ied in 1970',s and perhaps in 1980's after the study of (everywhere-

defined and so bounded) derivations. At that time the focus was

mainly on generators and d.ensely-defined derivations with models

from statistical mechanics in mind. A typical question we asked

was " characterize when a denseiy-defined derivation generates a

flow,' . Another question was related to KMS states (or equilibrium

states) asking, e.g., whether they exist uniquely or not' But I sup-

pose this was a bit too vague. The only result worth-mentioning

is the uniqueness of KMS states for flows corresponding to the

one-dimensional iattice system (or bounded surface energy).

However, clever people soon deserted this fieid because I think no

new results were coming as expected after a general theory (mainly

due to Bratteli and Robinson) and some specific results pertaining

to AF algebras (mainly due to Sakai) had been established.

See Bratteli-Robinson's book (1979,1981) and Sakai's book (1991)

for all these up to around 1980. (sakai's book is reiatively new,

but I suppose the main body of the book was written long before.)

See also Bratteli's lecture note " Derivations, dissipationq and group

actions on C*-algebras" (1986) for some progress made after.



1 Introduction

By a flow o on a C*-algebra ,4 we mean a continuous homomor-
phism a : R -+ Aut(,A), where Aut(,a) is the automorphism group
of A equipped with the topology of point-wise convergence.

By an a-cocycle u we mean that u is a continuous map from R
into the unitary group of the multiplier algebra M (A) of A with
the strict topology such that uses(rt) - us*tt s, f € R. If u is an
a-cocycle then t + Ad utat is a flow, called a cocycle perturbation
of a.

our far-reaching goal would be classifyins the flows up to cocy-
cle perturbations. Since we are not anywhere near this goal, I will
first review, as an introduction, two extreme cases, almost uni-
formly continuous flows and Rohlin flows. Although Rohlin
flows form an interesting subject (and may be the only class of
flows susceptibie of classification) we will not discuss here; instead
focus on flows which are more interesting from a physical point of
view. Namely we will discuss the flows which are approximately
inner, asymptotically inner, quasi-diagonal, or pseudo-
diagonal. If the C*-algebra is quasi-diagonal, pseudo-diagonality
is the weakest condition among those and implies the existence of
KMS states.



We then brieny discuss cOcycles;norrri-cOntinuOuS cOcycles are

des0ribable in a sense and general c0qycles can be approxirnated

by norm-continuOus one,which诒
,I think,very much di朊rent

frOrrL the case。f von Neumann algebr乙s。We nOte that the abOve

four conditi0ns are all invariant under cocycle perturbati0ns as

eXpected.

The ob呐Ous invarhllt for cOcycle cO刂
ug肮 e dasses0f nOws盯e

crossed prod讧cts诵 th d讧al nows(ac七iorl),due to%kesah⒛
d

Tak崩.We note th脱the nOws we are hterested h have KMs

states (if the c苄~algebra is unitε
11 and ￡ni七e) an(i'1ha七 the traces

ρ
f the crossed prOduct is described in terrns Of Klˇ

rS states (u11der

a 1r1ild assurrlption).  The ideal structure of the crOssed prOduct

cOuld be Ob七ained by s七udv刂ng the grOund s0ate(and。
eiling state)

representati0ns.We wⅡltry七o describe such。rOssed products and

then cOncl11de the talk by propOsing the problern Of classii。
砬ng such

crOssed products.



2 Flows; extreme cases

Let A be a c*-algebra. we denote by M (A) the multiplier algebra
of A. The strict topology on M(A) is determined by, *, llorlland r -+ Il""ll with a e A. rf A is unital then M(A) - A and
the strict topology is equivalent to the norm topology.

we call a a flow on A if a is a one-parameter automorphism
group of A such that t r--+ at(r) is continuous for all r € A.

Definition 2.1 we call a inner if there ,is a unitary flow u
in M (A) such that

at(r) == Ad ut(r) - ufiu;1 tr € A

and t F+ ,u,t ,is continuous tn the strict topology.
we call a universally weakly inner i,f there ,is a unitary

fl,ow U ,in A** such that dt : AdUtlA and, t ,-_+ (Jt ,is contin,uous
zn the weal{ topology.

We call c uniformly continuous if ll*r_idll ___+ 0 ast ___+ 0.
we call a almost uniformly continuous i,f for ana a_'inuaTiant ideal I of A the 'ind,uced, fiow on Al I has a non_zero

'inuariant hered,itary C -subalgebra on whi,ch it ,is un,iformly
cont'inuous. (Then euery ideal of A 'is a-,inuariant.)



If α is unif0rΠily cOntinuous then the generat0r

α古̂ id

九=hm~
J→0    古

is a bounded。
peratOr On'伎and satisnes
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A linear operator sat,sfyingthesetwo cOnditions is called a deriva-

tio田1and is autOmatically bOunded。
An example Of derivatiOn is

a n  i n n e r  d e r i v a 七i o n  t ㈠耐 仇
⒄ ) = u , 划 w 此h 而 ∈ M ⒁

) s G 。I f

z亻l is sirrlr)le then all derivatiOns are inlaer (sakai),         、
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叽 犭s切 εΩ跆Jv coη切η也o△s Ωηd

πα古( 劣) = E / J t ( 劣) 亻 , 劣 ∈ ⒕ , 古 ∈ R 。

There are always c0、'Euiant representations (sincq representa-

tions Of the crOssed product give such representatiOns)。
  But it

is a non-trivial questiOn tO ask whether there is a cN`riant irre-

dllcible (Or type II Or type III factOr) representatiOⅠ
l (in cas。 '亻l is

卩
irrlple).



Theorern 2.3 Cons'ider the follow'i,ng conditions on a.

1. a is almost un'iformly conti,nuous.

, 2. a 'is un'iuersally weakly inner.

3. a* on A* 'is strongly cont'inuous, 'i.e., 116*, - Oll -+ 0 as
t + 0 f o r Q e A * .

4. AnA 'irred,uc'ible representat'ion of A i,s a-coaa,r'iant.

5. There 'is a net (hr) 'i,n Aro such that Adithr(r) -, a1(r)
uni,formly i,n t on euery bounded set of R and for all r €
A and s'i,multaneously eithv weakly* conuerges to (Jf in A**
un'iformty i,n t on euery bounded set of R, where (J is a
unitary fl,ow in A** as in (2).

6. a 'is 'inner.

7. a 'is uni,formly cont'inuous.

Then (1)-(5) are equ'i,ualent. Moreouer i,f A r,s si,mple then
(1)-(6) are equ'iualent. If A'is si,mple and un'i,tal all cond'itions
are equ'iualent.

Note: (Z)<+(S) from Brown-Elliott.



The proofs are not trivial, but the above flows are kind of trivial.
One reason for that is they have trivial Borchers spectrum. Let

t(n) - {f € Lr(R) | ,upp(i) is compact}.

Definition 2.4 For f € Kl(R) and r e A define ay : A -+ A
by

*r@)-  [ f | )o , ( r )dt .
J

For r e A define the a-spectrum of r by

:Sp"(") - the kernet of {/ € /{1(R) | *r(d - 0}.

For a closed subset of F of R let

A"(F) - {r € A I Sp"(r) c F}.

The Aweson spectrum Sp(*) of a r,s the smallest closed
subset F satisfying A"(F) : A. I{ate that Sp(r) - -Sp(a).

Definition 2.5 The connes spectrum Rc(") (resp. the
Borchers spectrum P',s(a) ) i,s

O sp1'14;,
t U ' - t \ - t -  / 1

where B runs ouer att the non-zero a-,inuariant hered,,ii;ara C -
subalgebras of A (resp. those wh,ich generate essential ,id"eals
of A).



Remark 2.6 When A r,s separable, the Connes spectrum ,is

also gi,uen by

Rc(') - n I so(ndu(as id)l/ s rc)
I u

where I runs ouer the a-,inuariant ,id,eals of A and u rLlns ouer
the a 8 id-cocycles i,n M(I S rc).

A s'imr,lar equal'ity holds for the Borchers spectrum Ra(r)
by 'insert'ing " essent'ial" 'in front of i,deals.

Remark 2.7 F',s(a) i,s a, closed subgroup of R, Rs(*) ,is a
closed subset such that nRs(a) C Rs (a) for aII n € Z, and
Rs(t) > Rc(o).

Both Rc(r) and F-s(a) are 'inuariant under cocycle pertur-
bat'ions.

If A 'is a-prime then Rc(r) - Rr(a).
The crossed product A xo R ts prime 'if and, only i,f A ,is

a-prime andRs(r) - R. (Olesen-Pedersen)

Proposition 2.8 If a 'is almost un'iformly continuous then

Rs(r) - {0}

Proof. If a is uniformly continuous then Sp(r) is bounded. If a is
almost uniformly continuous then one finds an a-invariant heredi-
tary C*-subalgebra B of A such that alB is uniformly continuous
and B generates an essential ideal of A. Since Rs(r) c Sp(alB),
one deduces Rs(*) - 0.



We often derive the condition Rc(o) = R from a stronger con-
dition:

Definition 2.9 We calla profound if for eachp e R there
'is a sequence (2") in A such that llr"ll: 1,

Spo(r,,) c (p - Iln,p * Iln),

l l l t",r l l l  - 0, r e A,
and

l l t " * l l  - 0 + n : 0 ,  r e  A .

Proposition z.LA If a ,is profound then Rc(o) - R.

Proof . Let B be a non-zero o-invariant hereditary C*-subalgebra.
Let e e B+ be such that Sp,(r) C (-e, e). Let (z*) be as in the
above definition. Then ezne l0 for all large n. Hence Sp(alB) n
(p - €.,p * e) + 0. Thus Sp(olB) - R.

Besides the Connes and Borchers spectra of o we also have other
similar invariants: the von Neumann algebra versions of the in-
duced flow in an a-covariant tracial representation if there is such.



Thus almost uniformly continuous flows locate at one end of the
gamut of flows. At the other end there are flows of the following

kind:

Definition 2.11 We caII a Rohlin i,f for any fini,te subset f
or A' P € R' o"uo*',rir'-::;:un'.o,1*r':;riu!'^' such that

and

l l l r , r ] l l  < . ,  n e  f

This says that the central a-cocycle t r+ eiPt ts trivial, i.e., can

be approximated by a sequence of coboundaries t v-+ uial(un)

with (u") a central sequence of unitaries. This would entail that

any a-cocycle is trivial, which is a strong property on cv we can

explore.
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3  Flows in between
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It A is separable and a is approximately inner then there is a

sequenc e (h*) in A such that

Ad, eith'(") -- at(r)

uniformly in f on every compact subset of R. This is equivalent to

saying that: the generator do is the graph limit L of. the sequence

ad'ihn of inner derivations.
Here .L is defined as follows: r e D(L) lt there is a sequence

(*") in A such that Tn 4 r and adih"(n,) converges and then

L(") - lim adi,hr(r,r). However well you may choose the sequence
(h")

D - {, e D(d") | lim adihn(r) - d"(r)}

does not equal D(d") nor contain all the elements of compact a-

spectra if Rc'(a) + 0 and (A, a) has a faithful family of covariant

irreducible representations (the latter condition may follow from

the approximate innerness but I could not prove).

Maybe because of this we stil do not have an intrinsic definition

of approximate innerness.

Remark 3.3 Apparently asymptotical 'innerness i,mpl'ies that

ap pro rimate'inn ernes s .
All the known eramples of approrimately 'inner fl,ows are

asymptoti,cally 'i,nner (i,f the C-algebra 'is separable).

13



Theorern 3.4 Let A be a separable C -algebra. Then A 'is

anti,li,mi,na,rA i,f and only i,f there 'is an asymptoti,cally 'inner

flo, a such that a 'is profound.

Proof. There is a sequence (zr") of irreducible representations of

A such that Ran(2r,,) ) rc - {0} and |'-],, Ker(zr') : {0} We

construct a flow a such that each nTn rs covariant under a. The

construction of a is based on the following lemma.

Lemma 3.5 Let A be a separabte C -algebra and let (an) be a

dense sequence ,i,n A. Let (h") be a sequence 'in Aro such that

l lh" l l  (  1,
lllh", ".lll 

< 2-n llo-ll , n'L { n,
l l lh",h*l l l  12-n, m1n.

Let Hn: D|:rhn. Then AdeitH"(r) conuerges as n --+ n far
all r e A and defines a flo* on A.

We choose a unit vector 4r, from '11n. We will construct a

c e n t r a l s e q u e n c e ( u , . , ) t n A s u c h t h a t n n ( h n ) q n : 0 f o r k <

lln x(r*)qkll x 1 for ft I m, and

np(hnu*)rln * 0, m I n, k I n,

and
rp(hnun)rtr= ),prp(un)qp,, k <-n,

where (,\") is a prescribed dense sequence in (0, 1). This will ensure

that a is profound.

14



Remark 3.6 In the aboue construct'ion we can interpolate l,in-
early between Hn and Hnat to show that a 'is asymptotically
'inner. In th'is way we can construct a fl,ow a, on any separable
ant'ili,minarA C -algebra A such that Rc(r) - R. But we do
not know i,f there are 'infi,nitely nxanA cocycle conjugacy classes
of fl,ows on A.

The condition of asymptotical innerness was introduced to solve
the following lifting problem.

Theorem 3.7 Let A be a C-algebra and I an'ideal of A. Let
B - Al I be the quot'ient of A bA I w'ith Q the canon'ical map
of A onto B. If P 'is an asymptoti,cally 'inner fro, on B then
there 'is an asymptot'ically 'inner flow a on A such that

Q o - 0 Q

and all 'is un'iuersally weakly 'inner.

A natural question I have not solved yet is: If a is a flow on
A such that all is asymptotically inner and the induced flow on
B - Al I is asymptotically inner, then is o asymptotically inner?
The converse certainlv holds.
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Example 3.8 we cons'ider o quantum spin system ouer
the d-di,mens'ional lattice Zd. We d,efine, as an obseruable at-
gebra,

A : 8 1 ,
n€Zd

where A, : Mz (or any matrir algebra). we naturally haue
the act'ion ̂y of Zd on A such that .yr(A*) : Am+n. For each
fi,ni'te subset A c zd let At:8r,el An as a subalgebra of A.

Let Q be a funct'ion from the fi,ni,te subsets of zd ,into Aro
such that o(A) e At and y(e(A)) - o(A * n) . we catl e an
interaction.

Defi,ne for each fini,te subset /1, C Zd

H(^) - to(x),
XcA

whi.ch ,is called a local Hamiltonian.
Suppose that

‖Φ||入= ∑
|x|=奶+1

‖Φ(x)||(∷∞
丿rDo,

/or so%沼入 )0。 rrm par古犭cttJar mo℃℃ s姒 c古jvc幻 svp。 se动 G古

Φ 犭so/￡ η犭古ε 冂隅 彐c丿犭·0·,Φ (X)=0v九 εηevεr犰 e溺 G‰ e苫cr or

X犭 j乡 reΩ古er古凡aη so叨Qe coηs古Gη古。丿 r九 eη c尸 ov α
Φ
 oη ⒕ cG呃

Dε d‘V亏ηεd bv古九e J犭%冯犭古

Ad'古
Ⅱ ㈧

(⑶
→ αF(t)

as Λ
↑ zd.1马1ε月 ov α

Φ
犭s csvmp古o古jcaJ幻犭冗ηer。

〃 ε v犭″ 彳虍 r古o仇 犭s古卯 ε or月ovs@s quantum s∮ n nows∶

乃入

e

∞
∑

泗
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Let T be a bounded operator on a Hilbert space jl. T is called
quasi-diagonal if there is an increasing sequen ce (E*) of finite-
rank projections on ?l such that

E n * I '

a n d  
, , r F
lllD",Tlll -+ 0.

rf T is self-adjoint then ? is quasi-diagonal. If ? is an unbounded
self-adjoint operator we can sti[ say that ? is quasi-diagonal (due
to the Weyl-von Neurn-ann theorem).

This notion can be extended to a set of bounded operators.
When A is a C*-algebra, A is called quasi-diagonal if there is

a faithful representation r of .4 such that ,r(A) is quasi-diagonal.
Easy examples include AF algebras and commutative c*-algebras.

We extend this notion to flows in two ways.

17



Definition 3.9 G'iuen a Hilbert space'11, let A be a norn"L-
closed * -algebra of bounded operators on 'll and let U be a
un'itary flow on H such that UpUf e A for t e R and t ->
UgU{ 'is norm-cont'inuous for any r € A.

We call (A,U) to be quasi-diagonal i,f for any fi,n'ite set F
of A, any fi,nite set w of 'll, and e > 0 there 'is a fini,te-rank
project'ioin E on Jl such that

l l fE , " l l l  < . l l " l l  ,  re  F ,

l l ( 1  - E X l l  < . l l € l l ,  € € w ,
and

l l [E, (]r l l l  < r,  f  € [-1, 1].
We caII (A,U) to be pseudo-diagonal i,f for any fini,te set

F of A, any fini,te set w of 7{, and e } 0 there'is a fi,ni,te-rank
project'ion E on Jl and a un'itary flo, V on E7{ such that

l l l4,"l l l  S ' l l" l l , r e F,

l l ( 1  -E )€ l l  < . l l € l l ,  €e  , ,
and

l l EUpU iE -V lE rEVr . l l  < . l l " l l  ,  r e  f , t € [ - 1 ,  1 ] .

Let A be a C-algebra and let a be a flow on A. We call a
to be quasi-diagonal (resp. pseudo-diagonal) i,f (A,a) has
a couariant representat'ion (n,U) on a Hi,lbert space 7{n, wi,th
n fai,thful and non-degenerate, such that Qr(A),U) 'is quas'i-
d'iagonal (resp. pseudo- di,agonal).

18



Note that a being quasi-diagonal or pseudo-diagonal is much

stronger than A xoR being diagonal.

The condition ll[8, Ur]ll
quasi-diagonality can be replaced by

‖田,frl||<6,

where // is the self-adjoint generator of.(J: (Jt'eitH.

Remark 3.10 If a 'is quas'i-d'iagonal (resp. pseudo-di,agonal)
,and, B is an a-'inuariant C-subalgebra of A, then atlB 'is quas'i-

d'iagonal (resp. pseudo- di,agonal).
Thi,s ki,nd of property 'is not at aII clear for approt'i,mately

'inner fl,ows.

The following three theorems can be proved by adopting Voiculescu's
arguments to the present situation.
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Theorem 3.lL Let a be a fl,ow on a, C-algebra A. Then the

followi,ng condi,t'ions are equ'i,u alent :

1. a. is quas'i-d,tagonal.

2. For any fini,te subset f of A and e > a there 'is a fi,ni'te-
di,mens'i,onal C-algebra B, a fl,ow 0 on B, and a CP rnep

6 of A 'into B such that

l ldl l  < 1, l ld(") l l  > (1 - e)l l" l l ,

l lQ@)Q@ - 6@il l l  < ' l l" l l l lsl l ,  n,a € F,
and

l lgrd - 4orll < u, t € [-1, 1].

3. For any fi,ni,te subset f of A and e > 0 there is a couariant

representati,on (tr,U)' as well a,s o, fin'ite-rank proiection E

on'lln such that

l lE r ( r )E l l  > l l r l l  -e ,

l l [8 ,  " ( " ) ] l l  
< . l l " l l ,  re  f  ,

and,

l l  [8, Ut)ll < r, t € l-1, 1].
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Theorem 3.L2 Let a be a fl,ow on a C-algebra A. Then the

f olJow'ing condit'ions are equ'i,u alent :

1. a 'i,s pseudo-d'iagonal.

2. For any fin'ite subset f of A and, e > 0 there 'is a fini,te-
d'imens'ional C -algebra B , a fl,ow 0 on B, and a CP rnap

d of A 'i;nto B such that

l ldll ( 1, l ld@)ll > (1 - e)ll"l l,

ll|@Q(il - d@illl < .ll"llllvll, r,s e F,
and

l l \ r d ( " ) _  da t ( r ) l l  < . l l " l l  ,  t r eF , t € [ - 1 ,  1 ] .

3. For any fini,te subset F of A and e ) 0 there'is a coaari,ant
representat'ion (n,U), a fi,n'i,te-rank project'ion E on 'lln,

and a un'itary fln, V on E'14" such that

l lEr(r)El l  > (1 - e) l l r l l ,

l l [8 ,  n(* )1 l l  < . l l " l l ,  re  f  ,
and,

l l  Et lsr(r)U;E-UEn(r)E%.l l  <ul l " l l  ,  n€F,t  e [ -1,  1] .

△
⊥

o
乙



Theorem 3. L3 Let a be a quas'i-d'i,agonal (resp- pseudo-di'agonal)

flow on A. Then for any couaTi,ant representat'i,on (p,V) of A

such that pxv ,is a fai,thful representat'i,on of A xoR and

R*(p xV)nK(11p) : {0}, @@),V) is quas'i-d'i'asonal (resp'

pseudo-di,agonal) .

This follows by slightly modifying the proof of Voiculescu's weyl-

von Neumann theorem. It is not too dfficult to handle one un-

bounded self-adjoint operator associated with A x oR in addition

to itself.
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We∞ Ⅱ α GUHF n。 w亻 犰 ere忆 a seg△ence←→ or仇 膏∞ ers

jv乙九 古九a古凡m≥ 2Gηd       ∶

a%d

甄

∞

⑧

倒

〓
⒕

α古
=σ

Κ)'Ad'古
Ⅱ ,

仞九cre h呢∈ 0嘭%n)sΩ
·

Gong back to the quantu血s∮n且 ows,f the int￠acton0s酰 -

isnoβ乇h肮 Φ(X)=0whenever|X丨
)1then α

Φ
跽 a uHF早 ow。
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Definition 3. t5 Let A be an AF algebra and a a fl,ow on A.

We call a, anAF flow i,f there ,is an ,increas,ing sequence (A") of

fi,nite-d,,imens,ional C -subalgebras of A wi,th dense un'ion such

that
at(A") - An.

we call a an approximate AF flow ,if there 'is 0,n tn-

creas'ing sequence (Ar) of fini,te-d'imens'ional C -subalgebras of

A wi,th dense union such that

sup dist (An,, at(A")) --+ 0
te [0,1]

a s n - + o o

When B and C are subsets of A and d > 0

if for any r e B there is E € C such that ll" -

distance of" B and C is defined bY

山s t ( B , c ) = i n f 乇J > 0 | B εc , c εB ) 。

Proposition3。 16Le古 α be c月 ov oη a%⒕ 尸 aJ乡ebm。 r九e%

α js aη J凵ppro死吼 G古e⒕ F尸 o乇u铲 a%do训 v亻 仍 犭s a cocvcJe

pert△rb耐犭o%o/aη ⒕ 尸 月 ov。

The” Ⅱ P p盯t始 allrlOst obviOus.The difncult part诒the”only

iP’;the proof I have is rather roundabOut.

J

w e  w r i t e  B ∈C

v‖兰 J||吲|.The
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Tn th。0ase of quantum s●n nOws if the inter舵ton诒 of且血 te

r a n g e  a n d  ˇ

Φ( Λ) ∈砭0 P 冗
= ⒕Λ∩D

Where Dη h thQ dagonal狃atrices of⒕η
=山

饧 and D诒 the C木-

o讧0algebra gener乱ed by all Dn,then αΦ抬an AF且ow∶

lSuopose th酰ρ (X)=0if the d洫
mter of犭 诒 gre乱er th龃

K>0。 L乱 Λ be ann北e subset。f zd.ThO C辶subalgobra gener-

引沱d by⒕ Λ 洫 dD厄 with η within the K-neighborh。O-of^诒 left

invarhnt讧hder α
Φ
.)    ˉ

ReElar廴 3。17r%c姓 F`。 vs GJreGdvrom乙 疵 c九cJass or月ovs.

We do∶九o古七ηo乇u古o犰 犭s dav f漉 ere oj G gVG%古z仇 珀 灿 丿z。%u

%u九讠乙九 犭s ηo古Gη Gpproh%幻冂za古0/⒋F丿 zov.
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Proposition 3.18 If a i,s an AF flow then a'i,s quasi'-d'i,agonal.

Proof . We choose a maximal abelian C*-subalgebra Dn of- An )

A'n_t such that atlDn: id and let D be the C*-subalgebra gen-

erated by all Dn, whrch is a maximat abelian C*-subalgebra of A.

Let 6 be a character of D which extends to a pure a-invariant

state of A.
LeL (tr6,ry4) be the GNS representation;

Uf n6@)Od : n6ax(r)Q6, r € A.

Lel En be the finite-rank projection onto r6(A")Q4. Then

1 0 , , , 1 6 ( r ) ]  : 0 , r e  A n ,

and
lq",,ufl- 0.

In the case of quantum spin flows if O(X) € @,rex D,, without

the condition of finite range, we still have the above conclusion. In

this case ao mav not be an AF flow; but of more general kind of

AF flow.
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Proposition 3.19 If * 'is an approrimately 'inner flo, on a
quasi,-di,agonal C -algebra then a 'is pseudo-d'i,agonal.

Proof. We suppose that A acts non-degenerately on a Hilbert
'space 7l such that A is a quasi-diagonal set of B(11)

Let f be a finite subset of A and e > 0. By the assumption
there is an
f o r r € f
on H such
r e f , and
t  €  [ -1 ,  1 ] ,

h: h* € A such that l l"r(") - Ad 
"nh(")l l { e/sllr l l

and t € [-1,1]. There is a finite-rank projection E
that  l lDrEl l  /  (1 - . ) l l " l l  and l l [8," ] l l  < ul l r l l  for
l l[,E, h]ll < e/3. Since llEeithp - "itEhEBl[ 

< e/3 for
it follows that

l lE a1(r)E - Ad ai'tEho (Erv)ll S .ll"ll, r e F.

Note also that l lErEyE - EryEll S .l l" l l l lyl l for r,y € f . By
setting B - 8(811),0r: AdeitDhE, and 6@) - ErE,we obtain
the desired objects for (f , r).

Proposition 3.20 Let A denote the gauge-'i,nuariant CAR aI-
gebra. Then any fl,ow on A 'is quas'i,-d'iagonal.

Proof. There is a decreasing sequence (1r) of ideals in Asuch that
Al It = C , In-tlIn= rc for n 1, and )nIn - {0}.
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Proposition 3.2L Let Q be a mmTnct Hau,sdorff space and a
a fi,ow of homeomorph'isms of {1. If o has no fired po'i,nts then
[he i,nduced, fl,ow on C (A) is not pseud.o-diagonal.

Proof. The proof uses the existence of KMS states which follow
from pseudo-diagonality.

Proposition 3.22 Let D d,enote the un'it d,i,sk {z e C I 14 <
l\ and define a fiow a by at(z) - eit z. Then the 'i,nduced fl,ow
on C(D) 'is quas'i-d'iagonal.

When the C*-algebra is quasi-diagonal the relations among the
four notions are

Asymptotically inner + Approximately inner

{J,
Quasi - diagonal =+ Pseudo - diagonal
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4 Cocycles

If a is a flow on A, then o extends to a one-parameter automor-
phism group of M (A) such that t ++ at(r) is continuous in the
strict topology for r e M (A). We denote such an exbension by
the same symbol a.

Definition 4. I Let a be a fl,ow on a C -algebra A. We call u
a,n a-cocycle (i,n M (A) ) ,f u 'is a cont'inuous funct'ion o/ R
'into the un'itary group of M(A) such thaturar(u1) : us*tt s, f €
R. Moreouerif u6 € A+ C1 then we call u an a-cocycle i'n A.

Let w be a unitary. Then t -> wa1(w*) is an a-cocycle, called a
coboundary. More generally if u is an c-eocycle and ru is a unitary,
then

t -> wu1a1(w*)

is an o-cocycle.

Let h e Aro and define

a * f
l t t : l t" I a1r(h)a1r(h) . . . ein@)dt,. - . dtn,

-a--o J Qn

w h e r e i f t > 0

f ) , ,  :  { ( t t ,  . . . , t n )  |  0  <  h  l  t z  3

and if t
dulf dt - uti,at(h). Then one deduces that u is an a-cocyle in
A .

If u is an o-cocycle then we denote by Adua the flow t r--+ Adulc-
on A. ,If u is differentiable and i,h - dulldtlt:o then Ad uo is
generated by do * adi,h.



Proposition 4.2 Suppose that A 'is un'i,tal and.let u be an a-
cocycle. Then for any e > 0 there'i,s an analyt'i,c cocycle u and,
a un'itary w such that ll, - 1ll < e and

z古 于 vv古α 古(v苄)。

Proof. We

Note that
that r -
r(r* r)-r .
is analytic. Thus 'ut: w*u1a1(ru) is an analytic o-cocycle.

Proposition 4.3 Suppose that A 'is un'ital and let u be an a-
cocycle. Then for any e
cocycle u and an i,nuert'i,ble element w such that ll, - tll ( e
and _-

't'trt : WUPI(W- 
L) '

Proof . In the above proof if we drop the condition that w e U (A)
then we can assume that t r-+ n@) : u1a1(w) I 

"r, 
is entire for

r : u) 8 ezt Then I)t: w-Lu1a1(tr.') satisfies

u rar(u1) -  . -7 r . r ra r (w)ar(w-r  urar(r ) )  :  u s+t .

岫

b
y
㈣

υ
 
·
_
 
2
ˉ
·
μ

绷
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Theorern 4.4 Let u be an a-cocycle'in M(A), p e A, and
e ) 0. Then there 'is an a-cocycle u 'in A such that

l l ("r  -  ut)pl l  I  €,,  e [-1, 1].

Proof. If there is an e € .4"o such lhat ep N P, eutP ! utP,

d"(r) s 0, and t t+ eu,te is differentiable then we set

d,(eule) ldtlr:o : i,h.

Since lt* : h we define an a-cocycle u by

dulf dt : utat(ih)

with ua : 1. Then it would follow that utp N utp. The main

problem is to find such an e (for an a-cocycle close to u).
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Proposition 4.5 The four propert'ies, approrimate'innerness,

asymptotic,inn erne s s, p s eu do - di,a g onal'i,ty, quas'i- d'iag o nal'itA' are
'inuariant under cocycle perturbat'ion.

Proposition 4.6 Let B be an a-'inuariant hered'i,tary e -subalgebra

of A. Then the follow'ing hold:

1. If a ,i,s approrimately 'i,nner then dlB 'i,s approri,mately 'in-

neT.

2. If B generates A as an id,eal then the conuerse hold,s.

The aboue statements hold,s for pseud,o-d'iagonal'ity and quasi,-

d,'iagonality (instead of approrimate'innerness)'

If each of A and" B haue a stri,ctly pos'it'iue element, the aboue

statements hold, for asymptot'i,cal 'innerness ('instead of appror-
'imate 'innerne,ss).
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5 KMS states

Let Abe a unital C*-algebra and o a flow on A.

Definition 5.1 Let c € R. A state w on A 'is called an a-
KMS state at c i,f u)dt: w for t € R and w(rA) : w(yai"(r))

for all a-ent'ire r,y e A.

In the above definition if c I 0 then the invariance ad4 -- u)
follows from the other part of the condition. If c - 0 then the
KMS state is an a-invariant tracial state.

Proposition 5.2 A state w on A 'is a KMS state at c
i,f and only i,f for any r ) A € A there 'i,s a bounded cont'inuous

func t ' i , o tn f  onC" -  { z  €  C  l 0  <  S ( r )  S  c }  such tha t f  i s
holomorph'ic i,n the 'interior of C" and

f ( t ) - w ( y a 1 ( r ) ) ,  r € R ,

and,

f  ( t+ ' i c )  -w(a1( r )s ) ,  ,  €  R.
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It A - Mn then any flow o on ,4 is given BS or : Ad eith for
some h €. Aro. For c € R define a state ec on A by

vc( ㈡ =Tr(劣eˉ
c九

)/Tr(石

一

勺 ,峦 ∈ ⒕ ,

where Tr is the trace on A - Mn.
Then c,.," is a unique a_KMS state at c. This folows bv

computation:

w"(yau(r)) : crr(ye-ch *"ch 
"-"n) 

- crr(rye-ch1 - w"(ra)

where C - Tr(e-cl'';-t. If rr,, is a KMS state, then letting p € A
with ,(.) - tb(p.) we compute:

Tr(pry) : T(py"-ch*"ch) : Tb(e-"nr""n pa), r,E e A,

which entails e"h p - cl for some c ) 0.
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Proposition 5.5 If a 'is a UHF flow then ,it has a unique KMS
state for all c € R.

Proof. rf a1- I 66"i'thn on A- I Mkn,then the KMS state c,r
at c is obtained as the infinite tensor product

8 Of . e-"h") lTr(e-ch"1.
n

Let a be an AF flow on a unital AF algebra Aand let (,4r) be
an increasing sequence of finite-dimensional c*-subalgebras of ,4
with dense union such that ar(Ar) : An. Let Zn - An O Al, and
zn / ck" . L,et w be a KMS state of A. Then alAn is determined
by ,lzn which corresponds to a poin! in the kn - 1 simplex Ar,.
Denoting the map An+1 --a A' by S" (giving dlZr+r,-- dlZnwith
/ a KMS state on An11) *. conclude that the set of KMS states
of A is given as the projective iimit of

A , 3  L r P A g -

Thus the KMS states of an AF flow are describable in a sense.

Remark 5.6 If a i,s a Rohli,n flo, on a unital c -algebra, then
a has no KMS states at non-zero c. (If 

" 
,is a unitarg such that

at(u) x eitPu and w 'is a KMS state at c, then r - w(ur.r,*) -
w(u*ai"(u)) = e-P".)
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Proposition 5.7 suppose that a 'is a pseud,o-d,,iagonal fl,ow on
a un'ital c-algebra A. Then a has a KMS state for alt,inaerse
temperatures znclud,ing *oo.
Proof. Let f be afinitesubset F ofA and e ) 0. For each (f ,r)
we have a flow C on a finite-dimensionai c*-algebra B and a cp
map d of ,4 into B such that

f f i ) :  1 ;  l ld@l l  > (1 -  u) l l " l l
l ld@d(y)  -  d@i l l l  <  . l l " l l l lE l l ,  r ,E e r

and

110,6@) - da,(r)l l  < . l lr l l , ,  r € F, t € [_1, 1].
Here we have replaced the condition lldll < 1 by d0 - 1 since,4
is unital.

There is a self-adjoint h e B such that gt : Ad,eith. We fix
7 € R and define a state p on B by

e@) - ri(e-rhe) rcrq-rn),
where Tr is a trace on B. Then we know that p is a KN4s state
on B with respect to g at inverse temperature 7.

We set a state f1r,r7 on Aby pd, where g and / depend on
(f ,r). Let f be a weak*-limit point of f6,ry, where the set X
of (F, e) is a directed set in an obvious way. we fix a Banach
limit t/ on L* (x) such that f (r) is the t/ Iimit of (F , e) H
fvr)(r) for r € A. Notethat f (**r(gr)) ir the(t limit of (f ,e) *
p(d@.,t(s))), which is ctose to p(Q@)Crd@D around m Thus
one can conclude that / is a K\4S state at 1.

A similar proof works for a KMS state for 7 - *oo (or a ground
state and ceiling state).



Lemma 5.8 Let u be 0,n a-cocycle and, erpress u as u1 -
wupl(w-r) where u 'is an entire non-uni,tary a-cocycle. For
a state a of A and c € R define a state ut' on A by

,' (o) - 
w(w-r awur)

w(u ' )

If , i,s a KMS state at c wi,th respect to a then w, ,is a KMS
state at c w,ith respect to Ad ua.

Proof. Note w(ut) > 0. This foilows formally since

u(ur) - w(w-rwut) : w(wutat"(w)) - wt(ui"),,

which is positive because f r+ w(ut) is positive-definite. This is
because

w (utu-ti) :, (utoalo(u-1, )) : w (a -to(uro) * -ri@[,))

The numerator for a - tr* tr is non-negative because

w(w-I r* rwai") : w(r* rut") : w(rui"a*(r.))

and f * w(ruror(r*)) is positive-definite.

- Let e' : Adua. Formally w(ui")w,("y) equals

w (ru-r rAw u ic) :, (A ru i"air(rn-t) *nr(*)) .

Since *!u"@) - u),uire,t(w-t)at"(r)ar"(w)a*L w-l, this equals

, (aa!0"@)wui"aic(w r)) _ r(r-r a a!n"@)wui")

which is wt(yalu,@))
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Definition 5.g Let a be a flow on o, unital c-algebra. we
define K" C R x A* bA

Ko - {(", ,) | ar is a KMS functional at c},

where KMS functional means KMS state muttipli,ed, by a non-
negat'iue constant. Then K i,s a closed subset of R x A* and,
each sect'ion at c € R ,is a latt'ice. We call K" the KMS fi,etd,
for a.

Proposition 5.10 Letu be an a-coc;lcle. Thenthe KMs fi,eld,s
for a and, for Adua are ,isomorph,ic.

Proof. when 4 - wup(w-L) as in the previous lemma, the
desired map is given by

u e r ( r - t  .  u u t ) .
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6 Ideals of A X" R

Let a be a flow on a unital C*-algebra. The dual flow d is a flow
on the crossed product A xo R. By the Takesaki-Takai duality
(A *o R, a) is a complete invariant for the cocycle perturbations
of a.

If a has a,ground state then it induces a covariant representation
(n,,u, - si'tH1 such that 11 > 0. Then the representation r x (J
of the crossed product A xoR is not faithfur. since

the kernel contains )(/) , f e I(t(R) with rupp(i) c (0, m). If
/ is the ideal of A xo R generated by such )(/), then t r--+ ar(I)
is decreasing and .I satisfies

U a , ( r )  
- A X o R

and
n  ^  /  Y \  / a \

I  l a t ( t ) -  l U F .
l l

t

rf a has a ceiling state then A xo R has an ideal J such that
t * at(J) is increasing from {0} to A xo R.

(T× I/)(入(。厂))==丿fe饣
古ffr(古

)d艺=∫(-f̄r),
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For .\ ) 0 and an a-invariant hereditary c*-subalgebra B of A
we denote by B; the c*-subalgebra of B generated by B"(-^,,\),
where a also denotes the restriction of a to B. Note that ) r+ 81
is increasing, where B"(u) is the closure of {r e B I Sp,(") c u}
for an open set [/.

Definition 6.1 we say that a sat'isfies the no energy gap
condition if the follow,ing holds: Bt : B for any ), ) 0 and,
for any a-'inuariant hered,itary C -subalgebra B of A.

If .\" ---+ 0 and fr, l),I : m then a satisfies the no energy gap
condition.

Proposition 6.2 Suppose that )", * 0 and,I, | ̂ rl, : oo ,in
the aboue descript'ion of a. If B ,is a fl,ow on B then the fl,ow
a 8 0 on A I B sati,sfies the no energa gap cond,,it,ion.

m
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Theorem 6.3 Let a be a flo* on o, c -algebra A. suppose
thq,t for each t + 0 A ,is a;s'imple and T(or) - T . Then the
follow'ing cond,itions o,re equ,iualent:

1. a sati,sfies the no energy gl,p condi,ti,on.

2. AU prim,itiue ,ideals of A Xo R o,re nl,onotone und,er d.

3. For any B € H"(A) and for any ,inner perturbation
p of alB, B(0,^) is ind,epend,ent of ^
'independent of ̂  > 0, where

Bv : B?(V).BBB(V)

for any open subset V of R.

Moreouerif the aboue cond'it'ions are satisfied,, thenRc(o) - R
(or A Xo R i,s pri,me)

犭

话
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7 Ttaces on A X* R

Definition 7. L Let B be a non-unitail C -algebra. A trace on
B 'is a function r : B+ --+ [0, n1 such that

r ( l r ) - a r ( r ) ,  t r  € B + ,  ^ y e R + ;

r(r * A) - ,(") + r(y), r ,U e B+i

r(u*ru) - r(t)j tr € B, u e E.

We say that ,is densely-defined ,f BI _ {r e B+ | ,(") <
m) 'is dense 'in Ba and, that rfu rower semi-continuous f
{* e B* I r(t) < 7} ,is closed, for euer7 "y €R+.

we caII r minimal if for any r e B,r\ Bl and, an appron-
'imate i,d,enti,ty (e5) in Bi for the i,d,eal obta,ined, as the closed,
l'inear span of BI the ne:t r(rll2ei"tlr) d,,iuerges to i,nfini,ty.

Note that a lower sem,i-continuous densely-d,efined, trace ,is
m'in'imal.

Let 1 be an ideal of B and let 6 be a lower semi-continuous
densely-defined trace on 1. Then one defines d : A+ - [0, oo] by
6@):_ sup S(rrl2errlz) where e runs over {e e Ii t tt"ti < 1}.
Then @ is a minimal lower semi-continuous trace on B.

1
 
2
 
彐

z±3



We impose the following condition on o:

Definition 7.2 We call a uniformly profound, if for each
p € R there ,is a sequence (**) in A such that ll""ll _ I,
lllr,,ylll * 0 for u e A,

Spo("") c (e - tln,p + Iln),

and

r i rn i  rn r l>  r l2 .

The above condition on a is much stronger than profoundness
(and Rc(R) - R) . H 6 is a KMS state then the above condition
implies that nO(A)" is of type III.

For a sequence (1") in R let a be the UHF flow on M2* given by' 
the infinite tensor product of Ad(ei.\,,' O 1). Suppose that Ir, + 0.
Then

∑入斋=∞

if and only if a is uniformty"prolound. The tensor product a g 0
with any flow p is also uniformly profound.
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l V e  d e n O t e  b y ⒕×α R  t h e  c r O s s e d  p r O d u c t  o f ⒕b y  a . T h e
canOⅡcal un虬打 y multⅡli￠n0w of⒕×αR,denoted by入古,古 ∈ R,

satis￡es that

入古G=α 古(Ω)入古,a∈ ⒕ 。

Reca1l-l(R)=(r∈ L1(R)|supplr)抬 c。Ⅱ P妃 t)。 F。r/∈

KllR)we wr此e入
(rl=∫ F⑴ 入古幽 。

Lernrna7.3‘ ‰ppose苫九G古⒕ 犭sz锡 仿耐 G%d古凡Ω古α 犭s△ η亻 ormJ夕

pro/ozηd.丿5e古t乙 ε G ηoη~zεro Jo免uer se71犭-0oη古犭呃ttotjs dc%scJ⒊~

dGε锡ed古η ce o%⒕ × α Rs△ c九 犰 耐 仇 c‘ V吧s represe疵古a古犭o冗 πt

犭s/cc古ε死GJ.刀1eη钴沼钌 a℃o∈ RΩ 锡dC)oG仇 dΩ KMss古G古ε

vo%⒕ a古cs△c九古九G古

∷     t(甲
入
(/))==cγct,(G)/∫(g)e_cgdg

/or r∈ Kl臼
v。 Mo≈ over砣 /oJJovs仇 G苫 tap=「 叩 t ror

p∈ R。

Pro￠   since t is well-de￡ned OFl 入
(∫), / ∈: Fc1(R), 七here is a

Radon measure u On R such that

t(入(')) ==丿f∫(g冫

^u(g),  r∈

ff1(Ι1)。

Let (zη
) be a sequence in ⒕ f。rp ∈  Ι1 as in the denniti。h 。f

tlrl南r血 pr0允undness.⒊ nce||入古cη
_e咖

cη入古‖
→ 0,此 允 llow志

that允 r any r∈ Κ
1(B)

||入lr)劣冗
~男

n入(垧 rl‖
→ o,

where xp(古)=e勿
古
.Let‰ =入

(r)劣η劣荔入(/)-z。入o。 ∫)入(xpr)冰钌荔,

which cQnverges to zerO in nOrrn。  If 乡 ∈ fC1(R) is such tha七



9 > 0 and 9 is 1 on a neighborhood of supp(i), it follows that
\(g)t" - zn. Since ,(^(g))
0, i.e., ,(^(f)r"riA(f)-) - ,Qeof)*nir)(xof))__+ 0. Since
nr is factorial and (r"rtr) and ("htr) approximately commute
with all elements of A xo R, we may suppose that r,(r,rl) -+
ctr and zr'(r!rr") --+ czr weakly. Thus we can conclude that
c 1 r Q , f f ) ) ( / ) - ) : c 2 r ( ) ( y o f ) - ^ & o f D S i n c e 4 * c z >
we deduce that_ q
for all / € I(t(R) j r.e., r -- 0.) set ao - qlcz; ir..Ln it fol-
lows that dp(' + p) - epdp. Since ao is continuous in p and
apaq: ap+q for p,q € R one can conclude that ao _ e-a for
some c € R. since e"qdp(q) is translation-invariant, one can con-
clude that d,p(q) - Ce-"qilq.
Let / ∈ ff1(Ι1) be such that ^(/) ≥

on⒕ lDy ω
(G) ===T(Ω丿\(/))/t(入

(∫)). Using

abOve,u/e conclude that

and define a state rr,ri
the sequence (r,,) given

t(劣η劣荔a入(￡)〗~→
v∫

(Ω).cl t(入(∫))
王;ut the left hand side alsO cOnlrerges to vxp∫

(G) as f。11ows by qorn~

D呲 ing t⑴
竞G入(rl劣J。 Thukcl One∝

屮
conclude七hat vr=v桕

∫
for

all p∈R。 In th诒waly argue that vr诒independent Of∫and∷then

that此 诒 a KMs state脱 占。
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Remark 7.4 We need sorne cond'it'ion on a to obta,in the con-
clus'ion 'in the aboue lemma. If *r - id then A x o R 'r

A 8 Cg(R) and i,t has nxany trac'ial states if A has. If a ,is

the UHF flow on A : Mz* determ'ined by a, sequence ()")
such that ) , ,  + 0, D"l)" ,1 :  - ,  andln\? < *,  then a' is
profound and A xo R es prime and has tracial states.

Suppose that there is a lower semi-continuous densely-defined
trace rrfor each c ) 0 such that

f
r"()(/)) - | "-'n f 

(q)dq.
J

Then by taking the limit c ---+ co we obtain a trace r : (A x o
R)* ---+ 10, -] such that r()(/)) - 0 for positive / € /(t(R)
with suppi c (0, oo) and r()(/)) - oo for positive / € /(1(R)
with suppi c (-oo,0).  Hence {,  e (A *o R)* l  r(") :  0} is a
non-zero hereditary cone invariant under the inner automorphisms.
Thus the linear span is a proper ideal. One can conclude that it
cannot be dense and its closure is also a proper ideal. This is of
course well-known from the existence of ground states.

Lemma 7.5 Suppose that A 'is s'imple and unital and suppose
that a 'is un'iformly profound. Then any m,ini,mal lower sem'i-
cont'inuous trace on A xo R is densely-defined.
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Let T(Axo R) denote the set of lower semi-continuous densely-
defined traces on A xo R.

since the Pedersen ideal P is the smallest dense ideal of AX o R,
r is well-defined on P for all r e T - T(A x* R). Since r is
determined by rlP we may regard ? as a convex cone. we equip
7 with the topology determined by r t+ r(r),, n € p, which is
equivalent to the one determined by r r-+ r(il,(g)), a e A,g e
1('(R)

Proposition 7.G Let a be a uniformly profound, fl,ow on a uni-
tal C -algebra A and suppose that there ,is one and, only one
KMS state wi,th respect to a at each c € R. Then the conuer
coner@ x" R) 'is 'isomorph,ic to the conuer cone M of finite
nxeasures p, on R satisfyi,ng f e-ntdp(r)
wi,th the topology d,efined, Uy i -, I e-e'd,p"(s), p € R.
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8 Problems

1. when a is a flow on an AF algebra (or a uHF algebra) clar_
ify the relations among the four conditions on o; asymptoti-
cally inner, approximately inner, quasi-diagonal, and pseudo-
diagonal.

2. Give a necessary and sufficient condition for a quantum spin
flow to be an approximate AF flow.

3. Probably there are many flows a on A - Mz* such that
r@ x" R) = M and the primitive idear space is {0} u Ru R
(where one of R represents an increasing ideal under a the
other a decreasins). Are there many A xo R?

4. under the previous situation if there is another flow 6 which
behaves in the same way as d on the primitive ideals, is 0 a
cocycle perturbation of d?

5. under the previous situation if there is a flow p which in-
creases one primitive ideai and decreases anther, how closely
is 0 related to d?
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6. If a is a flow on the UHF algebra Mz* commuting with the
gauge action j of r, can we conclude that a is quasi-diagonal
or approximately inner? Here 7 is given by

γzˉ̄(Σ0Ad (孑 :)·

7. For any € ) 0 is there a d > 0 satisfying the foilowing condi-
tion? If a is a flow on a unital c*-algeb ra Asuch that A ) B >
la and B = Mnfor some n and if supr.1s,11 dist(M, , ar(Mr)) <
d then there is an a-cocycle u such ttrat'Adup6(Mr): Mn
and supte [0,1] Ilu, - 1ll < ..

8. Let a be a flow on a cuntz algebra A. prove that a has the
Rohlin property if A xo R is purely infinite.

9. Prove that Rohlin flows on the cuntz algebra are cocycle con-
jugate.
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